Simultaneous Communications/Tracking/Navigation for Multiple Spacecraft (in a beam) in Deep Space

Kar-Ming Cheung*

IEEE Aerospace Conference 2018 March 3 - 8, 2018

^{*}Jet Propulsion Laboratory, California Institute of Technology

Outline of Talk

BACKGROUND AND CHALLENGES

> NOTIONAL MARS REGIONAL NAVIGATION SATELLITE SYSTEM (MRNSS)

SIMULTANEOUS COMMUNICATIONS/TRACKING/NAVIGATION

- > SIMULTANEOUS UPLINK, AND 2-WAY DOPPLER/RANGING
- > SIMULTANEOUS DELTA-DOR: SAME BEAM INTERFEROMETRY (SBI)

CAN SIMULTANEOUS COMMUNICATIONS/TRACKING ENABLE NEW MISSION CONCEPT AND SCIENCE?

Background and Challenges (1)

- Typically one DSN ground station communicates with one spacecraft in deep space
- At Mars when multiple spacecraft are in the beam, one ground station can receive multiple downlinks (and one uplink) via MSPA, which is a static form of FDMA
- Traditional deep space tracking techniques include Doppler, ranging, and delta-DOR
- 2-Way Doppler/ranging requires tight coordination between ground and flight (Doppler compensation), and one ground station tracking one spacecraft (1-to-1)
- Delta-DOR is 1-way, but requires two ground station tracking one spacecraft (2-to-1)
- When number of missions increase, and for missions with multiple spacecraft, there
 might not be enough DSN antenna assets to meet missions' communications and
 tracking needs
- There is a desire to extend the current deep space communications and tracking techniques to support multiple spacecraft in a beam to improve the antenna usage efficiency

Background and Challenges (2)

- In 2016 we proposed a low-cost low-maintenance Mars Regional Navigation Satellite System (MRNSS) to support human Mars missions [8]:
 - Capitalize on the build-up of orbiting and surface infrastructures on Mars during the human Mars exploration era [1][2][3]
 - Leverage on a new geometric trilateration method that simultaneously performs absolute positioning and relative positioning [4][5]
 - Introduce the concept of using relative positioning that provides regional navigation services in the vicinity of a human Mars landing site (~100 km), thereby relieving the stringent requirements on orbit determination (OD) of Mars navigation satellites
 - Extend current DSN's tracking approaches of pairing one or two dedicated ground stations to one spacecraft for a period of time to simultaneously tracking of multiple Mars orbiters
 - Simultaneous Doppler/ranging [6]
 - Same Beam Interferometry [7]

Mars Regional Navigation Satellite System (MRNSS) [8]

Mars Regional Navigation Satellite System (MRNSS) [8]

Orbits of the Notional Mars Navigation Nodes (3-D View)

Utopia Planitia: 182.5° due East, 46.7° due North

Aerostationary orbiter 1 (Areo45): 162.5° due East Aerostationary orbiter 2 (Areo90): 207.5° due East

Aerosynchronous orbiter (Areo68): 180° due East and 20° inclined Deep Space Habitat (Mars48hr): 180° due East, 149.5° inclined

Mars Regional Navigation Satellite System (MRNSS) Preliminary Results on Localization Accuracy

Our Proposed Scheme		GPS\satellite Position\textbf{E}rror\textbf{P}								
		eme2	0m2	0.5m2	1m2	2m?	5m2	10m2	30m2	35m ²
	Pseudo-rangeଅ errorଅ	0@tm2	0.002	3273.852	6547.692	13095.392	32738.482	65476.992	196431.32	229169.92
ge		0.10km2	11.272	3273.702	6547.542	13095.232	32738.322	65476.822	196431.12	229169.72
gu		0.25@m2	28.192	3273.562	6547.352	13095.012	32738.082	65476.582	196430.92	229169.52
5		0.50@m2	56.372	3273.512	6547.122	13094.692	32737.712	65476.192	196430.52	229169.12
enc		1.00km2	112.74?	3274.152	6547.032	13094.242	32737.042	65475.452	196429.72	229168.32
Ps		2.00@tm2	225.482	3278.352	6548.302	13094.062	32735.982	6 5474.102	196428.12	229166.72
		5.00@tm2	563.712	3313.952	6563.762	13099.34	32735.152	65471.23	196423.92	229162.42

Our r roposedl Schemell		GPS®atellite₽ositionŒrror ☐								
		0m2	0.5m2	1m2	2m2	5m2	\ 10m 2	30m2	35m2	
]	0@tm?	14.432	21.572	35.072	65.442	160.062	3 19.042	956.042	1115.332	
angeរ ោ	0.10km2	21.592	26.822	38.472	67.272	160.752	3 <mark>1</mark> 9.32🛚	956.052	1115.327	
lo-ranı rror≅	0.25@m2	42.772	45.582	53.222	76.582	164.762	3 <mark>21.27</mark> ?	956.582	1115.752	
do-i	0.50@m2	81.892	83.332	87.692	103.452	178.672	328.482	958.822	1117.632	
Pseudo- erro	1.00@m2	161.952	162.622	164.842	173.6	226.382	356.412	968.342	1125.722	
Ps	2.00@m2	323.002	323.282	324.342	328.78	359.122	452.052	1006.712	1158.712	
	5.00@m?	806.957	806.997	807.347	808.997	821.367	✓ 865.36₹	1246.307	1371.59?	

Table②.⑤_{3D®}Relative③ocalization垂rror⑤tandardⓓevianion④cm)⑩f④he⑥New⑤cheme.卿 Distance⑪between⑥eference籀nd⑥targetጮ②00喙m.⑤igmaጮ②00ìm.⑩eltaጮ②00ìm.②

								/		
Our Proposed 2		GPS\\$atellite\prosition\\Fro\rac{r}{2}								
Scheme [®]		0m2	0.5m2	1m2	2m🛚	5m2	10m ²	30m2	35m ²	
	-	01cm2	0.14?	1.592	3.182	6.352	15.872	3 1.73 [?]	95.202	111.072
	angeឱ rខ	0.10@m2	16.032	16.102	16.322	17.202	22.472	35.45🗗	96.422	112.102
	Pseudo-ran error⊡	0.25@tm2	40.082	40.102	40.182	40.532	42.992	50.93🛭	103.022	117.792
		0.50@m2	80.152	80.162	80.192	80.36	81.592	85.992	123.992	136.482
		1.00@tm2	160.312	160.302	160.322	160.392	160.972	163.192	185.832	194.342
		2.00@tm2	320.622	320.612	320.612	320.63	320.892	3 21.95 ²	333.772	338.522
		5.00km2	801.542	801.532	801.522	801.522	801.582	/ 801.93 ²	806.472	808.382

Table 3.53 3D2 Relative 10 ocalization 12 rror 13 tandard 12 deviation 12 cm 10 f 12 the 10 temperature 12 ocalization 12 rror 13 tandard 13 ocalization 14 tandard 15 ocalization 15 tandard 15 ocalization 15 ocalizat

200 – 400 folds → improvement in RMSE accuracy

Sigma: media delay Delta: clock bias

Simultaneous 2-Way Communications/Doppler/Ranging: System Approach

- Assume X-band, which supports low rate commands/telemetry
- The Mars orbiters all lie within the same beamwidth of a DSN 34-m BWG antenna
- For N orbiters, the downlinks operate in N allocated frequency bands separated by N-1 guard bands to prevent interference
- Flight and ground upgrades:
 - The N orbiters time-share a single uplink; commands differentiated by SCID (MUPA) [9]
 - The ground "Doppler-compensates" the uplink carrier signal in either way:
 - With respective to the Mars center
 - With respective to the average (centroid) of Doppler's of N orbiters

Guard bands must be wide enough to accommodate the residual Doppler. Preliminary simulations: residual Doppler and Doppler rate are bounded by 45 KHz & 2.6 Hz/s

- Flight radio upgrades:
 - A different turn-around-ratio for each spacecraft so the same uplink would be coherently "turned-around" to modulate the telemetry and ranging signals on a different allocated downlink frequency
 - A well-designed tracking loop that can sweep, acquire, and track the unknown uplink carrier phase and high residual Doppler frequency
- Ground station uses existing MSPA for telemetry/Doppler/range processing

Simultaneous 2-Way Communications/Doppler/Ranging Doppler and Doppler Rate Profiles

NASA

Simultaneous 2-Way Communications/Doppler/Ranging: Smart PLL Tracking

Simultaneous Delta-DOR: Theory of Delta-DOR

multaneous Delta-DOR: Same Beam Interferometry (1)

- Same Beam Interferometry (SBI) was proposed by Jim Border et. al. to support the tracking of the Magellan and the Pioneer Venus orbiters over 25 years ago [7]
- Like Delta-DOR, SBI uses double-differencing of signal arrival times to achieve highly accurate angular distance estimation
 - Eliminate clock biases, media delay, instrument delays, etc.
- Instead of using quasar as reference (5-6 degree away), one can use a nearby spacecraft as a reference (less than a milli-degree)
 - Ground antennas do not need to point back-and-forth between the quasar and the spacecraft, thus increase observation time and simplify operation
 - Angular distance between spacecraft is much closer, thus increase accuracy from 10's nano-radian to nano-radians
- Quasar calibrations are needed only at the beginning and at the end of an overlapping pass

SAME-BEAM INTERFEROMETRY ERROR SOURCES

RSS POSITION ERROR (km)

multaneous Delta-DOR: Same Beam Interferometry (3)

RSS POSITION ERROR (km)

MGN ORBIT ACCURACY - PREDICTED AUGUST 11, 1990

multaneous Delta-DOR: Same Beam Interferometry (4)

- SBI is more accurate, and operationally simpler than Delta-DOR
- Since the introduction of SBI, SBI was used or proposed for use in some deep space (including lunar) scenarios, e.g. approach/landing, ascent/docking, etc.

Examples:

- Q. Liu, F. Kikuchi, K. Matsumoto, et. al., "Error Analysis of Same-Beam Differential VLBI Technique using two SELENE satellites," Advances in Space Research 40 (2007).
- M. Chen, Q. Liu, "Study on Differential Phase Delay Closure of Same-Beam VLBI,"
 2nd International Conference on Computer Engineering and Technology, April 2010,
 Chengdu, China
- S. Chen, Q. Liu, "A Study on Accurate Same Beam Interferometry Differential Phase Delay Closure," 12th International Conference on Computer and Information Technology, October 2012, Chengdu, China
- T. Martin-Mur, D. Highsmith, "Mars Approach Navigation Using the VLBA," Proceedings of the 21st International Symposium on Space Flight Dynamics, Toulouse, France, September 28 October 2, 2009

Can this Enable New Mission Concept and Science?

- An exercise of a solution looking for the right problems...
- This new "Multiple spacecraft per antenna" approach enables simultaneous communications, Doppler, ranging, and "delta-DOR" with different spacecraft, thus greatly reduces the burden of ground network. But can this approach also enable new mission concepts and science?
- Multiple spacecraft (CubeSats?) orbiting a moon or a planet to provide simultaneous Doppler measurements
 - Spacecraft life-time limitation, e.g. Class-D CubeSats, spacecraft at the harsh radiation environment of Jupiter
 - Short operation duration and graceful degradation
 - Spatial diversity of measurements to study system dynamics gravity, atmosphere, and magnetic field
- Any ideas?

References

- [1] H. Price, J. Baker, F. Naderi, A Scenario for a Human Mission to Mars Orbit in the 2030s: Thoughts Toward an Executable Program – Fitting Together Puzzle Pieces & Building Blocks, Jet Propulsion Laboratory, California Institute of Technology. Presented at the Future In-Space Operations (FISO) Telecon, May, 2015.
- [2] Mars Architecture Steering Group, Human Exploration of Mars Design Reference Architecture 5.0, Technical Report, NASA, 2009.
- [3] D. Bell, R. Cesarone, T. Ely, C. Edwards, S. Townes, "MarsNet: A Mars Orbiting Communications & Navigation Satellite Constellation," IEEE Aerospace Conference 2000, March 2000, Big Sky, Montana.
- [4] K.Cheung, C. Lee, A Trilateration Scheme for Relative Positioning, IEEE Aerospace Conference 2017, Big Sky, Montana, March 2017.
- [5] K. Cheung, C. Lee, "A Trilateration Scheme for GPS-Style Localization," Interplanetary Network Progress Report, 42-209, May 15, 2017.
- [6] K. Cheung, D. Divsalar, S. Bryant, and C. Lee, "Simultaneous 2-Way Doppler and Ranging for Multiple Spacecraft at Mars," IEEE Aerospace Conference 2018, Big Sky, Montana, March 2018.
- [7] J. Border, W. Folkner, R. Kahn, and K. Zukor, "Precise Tracking of the Megellan and Pioneer Venus Orbiters by Same-Beam Interferometry, Part I: Data Accuracy Analysis," Interplanetary Network Progress Report, 42-110, August 15, 1992.
- [8] K.Cheung, C. Lee, "In-Situ Navigation and Timing Services for a Human Mars Landing Site Part 1: System Concept," September 2017, 68th International Astronautical Congress, Adelaide, Australia.
- [9] D. Abraham, B. MacNeal, D. Heckman, Enabling Affordable Communications for the Burgeoning Deep Space CubeSat Fleet, SpaceOps 2016, May 2016, Daejeon, Korea.